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Abstract 

This report presents a forecast of total passenger for flights coming from or going to 

Charlotte and Raleigh/Durham North Carolina for Jan. 2020 – Jun. 2020 using data from January 

2000 to December 2019. Focusing on the primary air traffic hubs in North Carolina, the research 

involves extensive data manipulation and the application of various forecasting models including 

Exponential Smoothing State Space Model (ETS) and Seasonal ARIMA. The findings indicate 

that specific ARIMA configurations provide the most reliable forecasts. The research was executed 

in the R programming language, employing a range of techniques from data cleaning to 

exploratory data analysis and model selection. This report details the outcomes of the 

comprehensive analysis and explores the strategic implications of these results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. Introduction 

This project aims to employ predictive forecasting techniques to accurately project airline 

passenger traffic for Charlotte and Raleigh/Durham in the United States from Jan. 2020 - Jun. 

2020. The analysis utilizes data spanning from January 2000 to December 2019, focusing on 

variables such as location and time to build the models. Charlotte and Raleigh-Durham were 

selected as the primary study locations because they are central to North Carolina's air travel, 

together handling 91.69% of the state's total air traffic. Exploratory data analysis was conducted 

to delve into the details of the flight data. Additionally, a geographic map was created to visualize 

the spatial distribution of the data. 

2. Methodology 

2.1 Data Manipulation  

The U.S. Monthly Air Passenger dataset is a comprehensive collection of data that includes 

detailed information about the number of airline passengers per month, flight origins and 

destinations, and the specific months and years of those flights, spanning from January 2000 to 

December 2019. The dataset provides extensive details, such as the names of the origin and 

destination cities, state abbreviations and names, country codes and names, destination airport 

codes, and the timing of flights. Due to the vast scope of the dataset, which includes numerous 

origin and destination countries, our analysis was refined to focus solely on flights within the 

United States, specifically targeting the state of North Carolina. We concentrated on Raleigh and 

Charlotte, as these cities account for 91.69% of North Carolina's total air traffic during the study 

period. We used R filtering methods using the dplyr package to filter our data down to just North 

Carolina flights coming to/from Charlotte or RDU. After narrowing our scope, the dataset included 

217,683 flights with no significant missing values. There was a minor gap between five missing 

airline IDs, but these were not substantial enough to compromise the data's overall integrity.  



 
 

We aggregated passenger data by month and year, creating a time series object from this 

consolidated information. To assess our model's accuracy, we split the data into training and testing 

sets, allocating 90% of the data for training and 10% for testing. For the spatial component, we 

utilized the Google Maps API using the ggmap package in R to obtain precise latitude and 

longitude coordinates for the unique city names. These coordinates were then integrated back into 

the dataset. 

2.2 Model Creation 

The data was aggregated by calculating the total number of passengers monthly and annual. 

A seasonal plot was then used to examine the presence of seasonal trends across different years, 

identifying noticeable increases in passenger numbers during March and May and a decline in 

September. Subsequently, the Seasonal and Trend decomposition using Loess (STL) was applied 

to the training dataset. As seen in Figure 1.1 decomposition reveals a clear fluctuation within the 

original time series data, along with a discernible long-term upward trend. This trend component 

smoothed out the seasonal variations, displaying a gradual increase over time. The seasonal plot 

highlighted a consistent and repeating seasonal pattern, with peaks occurring annually. After 

extracting the trend and seasonal components, the remainder component appeared random, 

capturing the irregularities and non-systematic fluctuations in the data.  

 



 
 

Figure 2.2.1 Decomposition on the Training Data  

To ensure consistent variance across the data, a variance stabilization transformation was 

conducted. The Box-Cox transformation was selected for its effectiveness in normalizing data 

distributions and stabilizing variance. An optimal lambda (𝜆) value of 1.127672 was chosen to 

achieve the best variance stabilization, which was then integrated into our forecasting functions. 

Four distinct forecasting techniques were implemented to establish a benchmark and evaluate 

various simplistic approaches for time series prediction. The Naive Forecast serves as a baseline 

by assuming future values will replicate the last observed value. The Seasonal Naive method 

adjusted for recurring seasonal patterns, while the Drift Forecast incorporated a linear trend 

component. The Average Forecast predicted future values by computing the historical mean. Each 

model applied the Box-Cox transformation with the determined optimal lambda to the training 

data with aggregated monthly and yearly passenger data. The Root Mean Square Error (RMSE) 

was calculated for each model and stored for comparison on training data. 



 
 

 

 

Figure 2.2.2 Forecast of the four benchmark models and training data  

For the time series forecasting of passenger data, an Exponential Smoothing State Space 

Model (ETS) was also implemented to capture the underlying patterns of trend, seasonality, and 

error. The ETS model, specifically the ETS(A, A, A) version, was chosen based on its ability to 

model data with additive error, trend, and seasonal components, for the given characteristics of the 

dataset. The model was identified using the ets() function in R, configured to automatically select 

the best fitting model based on information criteria (BIC). The chosen model was an ETS(A, A, 

A), both the trend and seasonal components were best modeled as additive effects, which aligns 

with the observed seasonal peaks and overall upward trend in passenger numbers. The model also 

implemented the Box-Cox transformation, with a lambda value of 1.127672. The Root Mean 

Square Error (RMSE) was calculated for each model and stored for comparison on training data. 



 
 

To effectively implement ARIMA models for forecasting, it was essential first to establish 

the stationarity of the time series data. Initial assessments using the KPSS Unit Root Test indicated 

non-stationarity; the test statistic of 4.1306 significantly exceeded the critical value of 0.463 at the 

5% significance level. This result confirmed that the time series was not stationary, needs a 

transformation to achieve stationarity. This involved applying seasonal differencing. After 

applying one seasonal differencing, a subsequent KPSS test showed a test statistic of  0.1466, 

which is below the 5% critical value, confirming that the series had become stationary with this 

adjustment. 

To examine the stationary data, the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) on Figure 2.2.3 were visualized using the ggtsdisplay function 

in R. The plots revealed significant autocorrelations at initial lags (1-7) and a notable yearly pattern 

at lag 12, suggesting an AutoRegressive (AR) process with a strong seasonal influence. The PACF 

displayed a prominent spike at lag 1 and additional seasonal spikes at lags 12 and 24, indicating 

the need for an AR component and seasonal adjustments. 

 



 
 

Figure 2.2.3 Autocorrelation Function and Partial Autocorrelation Function 

Based on these insights, a Seasonal ARIMA model should be used to accommodate both 

non-seasonal and seasonal dependencies. The auto.arima() function was utilized to automate the 

selection of the best fitting model, using the Akaike Information Criterion (AIC) for optimization 

due to its efficacy in predictive modeling contexts. The function was configured with stepwise set 

to false, D set to 1 to account for one seasonal difference, and d set to 0 indicating no non-seasonal 

differences. This function selected an AR model that includes a seasonal component 

ARIMA(1,0,1)(2,1,1)[12] with drift Box Cox transformation: lambda= 1.127672. 

To explore further, another ARIMA model was configured, this time employing the 

Bayesian Information Criterion (BIC) for a more regularized model selection approach. This 

function selected an AR model that includes a seasonal component ARIMA(1,0,1)(0,1,1)[12] with 

drift with drift Box Cox transformation: lambda= 1.127672. Each model’s performance was 

quantitatively evaluated, with the Root Mean Square Error (RMSE) calculated and stored for 

comparison across all models on the training data.  

2.3 Model Selection 

Comparing the RMSE values obtained from the training data to determine the top-performing 

models, it was found that the primary candidates were two ARIMA models and one ETS model 

show in the Table 2.1.3.  

 ARIMA(1,0,1)(2,1,1)[12] ARIMA(1,0,1)(0,1,1)[12] ETS(A,A,A) 

RMSE  291369.3 288072.5 631790.2 

  

Table 2.3.1 RSME of ARIMA Models and ETS Model 



 
 

A check on the residuals for each model was done using the checkresiduals function in R with a 

lag of 24. The Ljung-Box test results and visual inspections indicated that the ETS(A,A,A) model 

displayed autocorrelation in its residuals, suggesting a potential need for further model refinement 

or specification adjustments. The ARIMA(1,0,1)(2,1,1)[12] with drift was above the .05 

significance level indicating the residuals were white noise. The ARIMA(1,0,1)(0,1,1)[12] with 

drift exhibited the least autocorrelation among the models, indicating a robust fit to the time series 

data. Residuals from the ARIMA(1,0,1)(0,1,1)[12] with drift model were well-centered around 

zero, suggesting an effective fit. Autocorrelation values primarily stayed within the confidence 

intervals, reflecting minimal autocorrelation. Ljung-Box Test: A p-value of 0.07997 confirmed the 

lack of significant autocorrelation, supporting the model’s capability in capturing the dynamics of 

the time series without leaving residual patterns. 

A cross-validation process was implemented to further test the models over different data 

segments and forecast horizons. This method allowed for an extensive evaluation of each model’s 

predictive accuracy. The ARIMA(1,0,1)(0,1,1)[12] with drift consistently showed the lowest 

RMSE, proving its efficiency in accurately forecasting seasonal patterns. Cross-validation was 

also performed on ETS model ETS(A,A,A). Despite its suitability for the data characterized by 

additive trends and seasonality, the ETS model did not perform as well, suggesting that its residuals 

might still contain autocorrelation or the need for further tuning. 

The final model selected was the ARIMA(1,0,1)(2,1,1)[12] with drift, for, despite a weaker 

cross validation score than the lower order ARIMA model, the score was close enough to indicate 

there was no significant overfitting and therefore would provide greater predictive power.  In 

addition to this, the model’s residuals were indeed white noise. This model employs settings such 

as approximation=TRUE, seasonal=TRUE, ic="aic", stepwise=FALSE, d=0, and D=1. It 



 
 

demonstrates a superior in-sample RMSE, indicating a better fit to the training data and suggesting 

that it effectively captures the dataset's underlying patterns, which are crucial for accurate 

forecasting. Although its cross-validation RMSE is slightly higher than that of the 

ARIMA(1,0,1)(0,1,1)[12], the difference is minimal, indicating that the ARIMA(1,0,1)(2,1,1)[12] 

generalizes well to unseen data. The use of approximation=TRUE speeds up the model fitting 

process, a significant benefit for large datasets, while also reducing computational demands 

without substantially compromising accuracy. 

Selected Model Equation: 

𝑌𝑡′ = 0.8711𝑌𝑡 − 1′ + 0.0403𝑌𝑡 − 12′ − 0.0508𝑌𝑡 − 24′ − 0.3289𝜀𝑡 − 1 − 0.7172𝜀𝑡 − 12
+ 69592.891 ⋅ 𝑡 + 𝜀𝑡 

3. Analysis  

3.1 Exploratory Data Analysis 

In this section of the exploratory data analysis, we delve into various aspects of flight and 

passenger data to uncover patterns and insights that can inform future decisions and strategies. We 

begin by visualizing the top 15 airlines based on the number of flights they operate, followed by a 

look at the top 15 destination cities. Additionally, we explore specific data from Charlotte and 

Raleigh/Durham airports in North Carolina and analyze passenger numbers over different months 

and years. 

Figure 3.1.1shows a visualization of the top 15 airlines sorted by the total number of flights. 

This is achieved by grouping the data by carrier name and counting the flights. The bar chart is 

enhanced with a gradient color scale from light blue to blue, emphasizing airlines with a higher 

number of flights. US Airways Inc., PSA Airlines Inc., and Southwest Airlines Co. are the leading 

carriers with significantly higher flight operations compared to others. 

 



 
 

 

Figure 3.1.1 Top 15 Airlines Sorted by the Total Number of Flights 

  Like the carriers, we analyze the top destination cities in Figure 3.1.2. The data is grouped 

by destination city name, and the number of flights is counted to identify the top 15 cities. This 

bar chart uses a color fill based on the destination city, providing a visual differentiation between 

cities. Common destinations between the two airports are highlighted in different colors (blue for 

Charlotte, red for Raleigh/Durham) against a gray background for other destinations. This dual-

bar chart layout allows for an immediate visual comparison between the two airports, emphasizing 

shared and unique routes. 



 
 

 

 

Figure 3.1.2 Top 15 Destinations From Charlotte and Raleigh, North Carolina 

Finally, a heatmap to easily track passenger numbers over various months and years. In this 

visualization, data is organized by year and month, and the total number of passengers for each 

period is calculated. The heatmap displays this information using a color gradient ranging from 

yellow to purple. Light yellow represents months with fewer passengers, and dark purple indicates 

months with more passengers. This color coding clearly shows trends in passenger traffic, with 

dark purple spots highlighting peak travel times, usually later in the year. The gradient shift from 

yellow to purple across the heatmap helps to quickly spot years with increasing travel activity In 

the heatmap, we observe that darker purple shades, indicating higher passenger volumes, begin to 

appear more frequently after the year 2013.  



 
 

Figure 3.1.3 Heatmap to Showing Number of Passengers for Month and Year  

 

3.2 Spatial Analysis: Geocoding and Mapping Flight Data 

In this section of the analysis, we focus on enhancing our dataset with spatial components 

to better understand geographic trends in flight data. The process begins by isolating city names 

from our primary dataset and creating a new data frame to handle these unique geographical 

identifiers. We then use the Google Maps API to geocode each city, transforming city names into 

precise latitude and longitude coordinates.  

Once we have the geographic coordinates, we incorporate them back into our main dataset, 

enabling us to conduct spatial analyses and visualizations. The dataset was broken into two-parts 

flights originating from or destined to Charlotte and Raleigh/Durham, North Carolina. This 

approach helps in visualizing not only the volume of flights but also their geographical distribution 

across the U.S. We also generate maps using the sf (simple features) package in R, which facilitates 



 
 

the integration of complex geographic data with traditional data frames. By plotting these 

coordinates, we create visual representations that highlight flight traffic patterns and densities. In 

Figure 3.2.1, there is a noticeable concentration of heavy traffic along the East Coast, with many 

passengers. To better present the flight data between Charlotte and Raleigh and other destinations, 

we are implementing a more interactive and intuitive mapping solution using the Shiny and Leaflet 

libraries in R shown in Figure 3.2.3. This approach allows users not only to see static data points 

but also to interact dynamically with the information. The user interface of our Shiny app includes 

options to select views based on direction (to or from Charlotte/Raleigh), as well as filters for 

specific years, months, or airlines.  

 

Figure 3.2.1 Flight Traffic from charlotte and Raleigh/Durham, NC  

 



 
 

 

 

Figure 3.2.2 Flight Traffic to charlotte and Raleigh/Durham, NC  

 

 

Figure 3.2.3 R Shiny Interactive Air Traffic Map 

 

4. Forecasting Results for First Half of 2020 

Month Passenger Forecast 95% Prediction Interval  

January  4567622 [4322334, 4811238 ] 



 
 

February 4389766 [4117390, 4659999] 

March  5126686 [4840709, 5410640] 

April  5025187 [4723591, 5324489]  

May  5282171 [4970933, 5591084] 

June  5169308 [4847909, 5488174] 

 

 

5. Discussion  

The actual passenger numbers during 2020 are likely to deviate significantly from this forecast 

due to the unprecedented impact of the COVID-19 pandemic. This impact includes widespread 

travel restrictions, lockdowns, and a significant reduction in demand for travel services. 

 

 

6. Conclusion and Future Work  

 



 
 

The project successfully developed robust predictive models to forecast airline passenger 

traffic, particularly focusing on the interplay between Charlotte and Raleigh-Durham. The 

comparison of various models, such as ETS and multiple configurations of ARIMA, highlighted 

the nuances in their predictive abilities. The Seasonal ARIMA model, particularly 

ARIMA(1,0,1)(2,1,1)[12] with drift, emerged as the most effective, demonstrating high accuracy 

in both training and cross-validation phases. This model's capability to handle seasonal variations 

and trends ensures reliable forecasts, making it an invaluable tool for stakeholders in the aviation 

sector in North Carolina. The integration of spatial analysis using the Google Maps API and R’s 

Shiny app further enriched the visualization and interpretability of the data, enhancing the practical 

value of the research. Future research should explore the integration of additional variables that 

may impact air traffic, such as economic indicators, weather conditions, and socio-political events, 

to enhance the models' comprehensiveness and accuracy. Lastly, the development of a real-time 

data updating system in the forecasting model could adapt to rapidly changing air travel patterns, 

particularly relevant in post-pandemic recovery scenarios. 
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